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Abstract A numerical model is presented in this paper to better describe the cavitated fluid flow
phenomena in liquid-lubricated Asymmetrical Herringbone Grooved Journal Bearings (HGJBs).
An effective “follow the groove” grid transformation method is used in the present study to capture
all the groove boundaries. A singularity at the groove edges is avoided with this approach.
Symmetrical groove patterns as well as asymmetrical groove patterns can be accurately computed
with the proposed method. The difficult problem of abrupt changes of oil film thickness in the liquid-
lubricated HGJB physical domain is modeled here through a series expansion approach. Results are
comparable with available experimental and known numerical data from other investigators.
Cavitation footprints, pressure distributions and their corresponding load characteristics are
presented in this study. Effects of the critical transitional flow phenomena on the performance of
the asymmetrical HGJBs are also determined through the present study.
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Nomenclature
c ¼ radial clearance
e ¼ eccentricity
h ¼ film thickness
h̄ ¼ dimensionless film thickness (h/c)
Hg ¼ groove depth
hg ¼ dimensionless groove depth (Hg/c )
g ¼ switch function
i ¼ subscript denoting circumferential

direction
j ¼ subscript denoting axial direction
J ¼ Jacobian of transformation
J 21 ¼ 1/J
L/D ¼ length to diameter ratio
L1,2,3,4 ¼ groove lengths as shown in Figure 1

(c)
P ¼ film pressure
P̄ ¼ dimensionless film pressure

ðP=vmÞðc=RÞ2

Pa ¼ ambient pressure
Pa ¼ dimensionless ambient pressure
Pc ¼ cavitation pressure
Pc ¼ dimensionless cavitation pressure
R ¼ bearing radium
t ¼ time
t̄ ¼ dimensionless time (vt )
U ¼ journal surface velocity
W ¼ load capacity
�W ¼ dimensionless load capacity

(W/vmR 2) (c/R )2

wg ¼ groove width
wr ¼ groove ridge width
x ¼ coordinate in circumference
�x ¼ dimensionless of x(x/2pR )
y ¼ coordinate in axial direction
�y ¼ dimensionless of y(y/L )
a ¼ groove angle
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1. Introduction
Cavitation footprints which may consist of gas or vapor or both have important
influence on liquid-lubricated bearing behavior. The formation of cavities and
their disposition affects the pressure distribution and hence the integrated
quantities such as load capacity and attitude angle of bearings. When
cavitation collapse, cavitation erosion (Dowson and Taylor, 1979) may occur
and cause a variety of damage to the bearings. Various cavitation boundary
conditions have been proposed by earlier researchers, such as the Sommerfeld
conditions, half-Sommerfeld conditions (or Gumbel conditions), Reynolds
conditions (or Swift-Stieber conditions) and JFO conditions. Half-sommerfeld
conditions implies film rupture at the minimum film-thickness position and
simply replaces the predicted negative pressure with zero. Reynolds condition
is more precise than half- Sommerfeld conditions. It properly treats the film
rupture but neglects the film reformation. JFO theory is regarded as one of the
best theories that account for cavitation boundary conditions for
hydrodynamic liquid lubrication. Elrod and Adams (1974) proposed a
computational scheme that automatically implements JFO theory. Brewe (1986)
modeled vaporous cavitation in dynamically loaded journal bearings using
Elrod’s algorithm. Vijayaraghavan and Keith (1989) proposed an improved
scheme as an alternative to that of Elrod’s algorithm. Vijayaraghavan and
Keith (1990) modified their algorithm through grid transformation and
adaptation techniques.

Herringbone grooved journal bearings (HGJBs) are frequently used in the
computer HD, CD, VCD as well as DVD drives. Compared to plain journal
bearings, HGJBs have much higher stiffness and stability characteristics. The
slanted grooves pump the lubricants inward to achieve a higher pressure field
in the center which will reduce cavitation as well as the leakage. Groove types
can be designed for various purposes. Kawabata et al. (1989) proposed a regular
and reversible rotation type. Chen (1995) suggested a self-replenishing
asymmetrical hydrodynamic bearing. Typical asymmetrical HGJBs are shown
in Figure 1.

The study of cavitation was neglected in HGJBs analysis till recently.
Elrod’s cavitation algorithm has been introduced into HGJBs by Jang and
Chang (2000) (finite volume method) and Wu (2000) (operator-splitting method).
However, their methods of applying symmetrical boundary conditions at
groove apex are limited to only symmetrically grooved patterns.

b ¼ bulk modulus
b̄ ¼ dimensionless bulk modulus

(b/vm )(c/R )2

1 ¼ eccentricity ratio (e/c )
h,j ¼ axes in computational domain
u ¼ density ratio (r/rc)

m ¼ lubricant viscosity
r ¼ fluid density
rc ¼ fluid density in cavitaion zone
f ¼ attitude angle
w ¼ circumferential coordinate [rad]
v ¼ angular rotation speed
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Figure 1.
Geometry and groove
patterns of herringbone
grooved journal bearings
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The groove steps on either the journal or the sleeve create a discontinuity in the
fluid film thickness that add difficulties in numerical solutions. The narrow
groove theory (NGT) treats the groove-ridge pair as a control volume and
assumes that since the number of grooves approaches infinity, the pressure
distribution along the groove-ridge pair can be regarded as linear. Numerous
researchers have worked concentrated on NGT, which matches the test data
accurately only at low journal eccentricities and large number of groove-ridge
pairs.

Several studies were accomplished for finite groove numbers in liquid-
lubricated HGJBs. Bonneau and Absi (1994) determined the performance
characteristics of gas-lubricated HGJBs with small number of rectangular-
profile groove-ridge pairs by use of finite element method. Kang et al.
(1996) deduced a finite difference method on 8 circular profile grooves.
Zirkelback and Andres (1998) also detailed a finite element analysis on
HGJBs.

There are no details reported on how to overcome the difficulties of film
thickness discontinuities on small groove number HGJBs except Kang et al.
(1996) mentioned that nodes are staggered to avoid these difficulties. In Jang
and Chang (2000), 200 grid points in the circumferential direction obviously
cannot catch all the 16 groove-ridge interfaces.

The present study incorporates Elrod’s algorithm with Reynolds equation to
predict the cavitation zone and other static characteristics of asymmetrical
HGJBs. A Grid transformation technique is applied along the groove direction

Figure 1.

Cavitation
foot-prints

521



over the entire solution domain. Groove apex singularity at the groove center,
groove ridge interfaces and abrupt film thickness changes are considered in the
present work. Results are compared with available published symmetrical
groove pattern and the reversible one groove patterns are compared with the
work of Kawabata et al. (1989).

2. Analytical model and numerical methods
2.1 Problem formulation
For the present problem, the oil “groove” is considered as the static member,
while the “smooth” shaft is considered as the rotational member. The
governing, two dimensional, Reynolds equation, describing the laminar flow
for a Newtonian lubricant with compressibility effects, can thus be written
as:

›rh

›t
þ

›

›t

rhU

2
2

rh3

12m

›P

›x

� �
þ

›

›y
2

rh3

12m

›P

›y

� �
¼ 0: ð1Þ

Elrod (1974), Elrod (1981) modified this equation by introducing a switch
function g in order to automatically implement the cavitation boundary
conditions. In the cavitation zone, g ¼ 0; in the full film zone, g ¼ 1:
Thus, the pressure flow within the cavitation zone can be switched on
and off in the groove domain with mass conservation according to JFO
theory,
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›
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þ

›
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The density of the lubricant is related to the film pressure through the
definition of the bulk modulus, b, and density ratio, u, i.e.

gb ¼ r
›P

›r
ð3Þ

u ¼
r

rc
ð4Þ

Combining equations (3) and (4) and integrating yields

P ¼ Pc þ gb ln u ð5Þ

After obtaining the solution of Equation (2) which gives us a value of u,
and using Equation (5), we will get pressure distribution in the whole
domain.
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Equation (2) can be nondimensionalized by using dimensionless variables as
defined in the nomenclature,

›ðu �hÞ

›�t
þ

1

4p

›ðu �hÞ

›�x
¼

�b

48p2

›

› �x
�h3 ›u

› �x

� �
þ

�b

48ðL=DÞ2
›

›�y
�h3 ›u

› �y

� �
ð6Þ

For simplicity, the bar notation “-” will be dropped in the following
analysis.

While the switch function is not explicitly differenced, we may write that
gð›u=›xÞ ¼ ð›gðu2 1Þ=›xÞ Vijayaraghavan and Keith (1989).

Combining the above with Equation (6) produces,
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2.2 Grid transformation
In order to model the complex geometry of groove patterns and to
simplify the computations, the grids that are arranged along the slant
grooves in the x-y physical domain will be transformed to j2 h
computational domain. The x direction is taken as j direction and the
groove direction as h direction.

Thus,

hx ¼ 0; f x ¼
›f

›x
¼ jx

›f

›j
þ hx

›f

›h
¼ jx

›f

›j

f y ¼
›f

›y
¼ jy

›f

›j
þ hy

›f

›h

jx ¼ J 21yh;hx ¼ J 21y; jy ¼ J 21xh;hy ¼ J 21xj

J ¼ xjyh 2 xhyj

Equation (7) can be written in the computational domain as,
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2.3 Treatment of the groove apex
Along the apex of grooves when groove edges change direction, there is a
singularity in jx since the values on the upper and lower part of this line are
constants but have opposite signs. A symmetrical boundary condition ›u/›y is
often used in literature to avoid this singularity and simplify the grid
transformation, i.e. the transformation is used only within the half domain.
However, these methods are limited to symmetrical problems and have to
handle Neumann boundary conditions. To remedy this, an innovative method
is applied here. The coordinate transformation is performed over the entire
domain and the jx value on the apex line is assumed to be the average jx of the
upper and lower grid values which are next to the apex grids. Thus, the method
can be readily applied to asymmetrical groove patterns and only Dirichlet
boundary conditions are needed.

2.4 Lubricant film thickness
The film thickness is known as:

h ¼ f ðjÞ þ hðxÞ

hðxÞ ¼ 1 þ 1 cosðwÞ

w ¼ 2px

f ðjÞ ¼
0 on the ridge

hg in the groove

)
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›h

›j
¼ f 0ðjÞ þ h0ðxÞ·xj ð9Þ

›h

›h
¼ h0ðxÞ·xh ð10Þ

h0ðxÞ ¼ 221 sinðwÞ ð11Þ

2.5 Load capacity and attitude angle
The radial and tangential loads (forces acting along and normal to the line of
center, respectively) can be determined after the pressure is obtained within the
fluid film as,

Fu ¼

ZZ
s

P sinudxdy ð12Þ

Fr ¼ 2

ZZ
s

P cosudxdy ð13Þ

Load capacity and attitude angle can then be determined as follows:

W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

r þ F2
u

q
ð14Þ

f ¼ tan21ðFu=FrÞ ð15Þ

The dimensionless load capacity is defined for parametric study as the
nomenclature.

2.6 Numerical formulations
Since at present stage we consider only steady problems, we will set the groove
member as the static member, while the smooth member as the rotating
member.

Equation (8) is discretized using a finite-difference method. The shear flow
term is discretized by a second order upwind scheme:

1

4p
h
›u

›j

� �
·jxji;j¼

hi;j

4p

3ui;j 2 4ui21;j þ ui22;j

2Dj
·jxi;j ð16Þ

Other terms were discretized by central-difference schemes.
The film thickness at abrupt changes must be carefully treated. The

derivative of h need not be discretized since the exact values can be given.
Though, at the groove-ridge boundaries, ›h/›j is theoretically infinite and is
modeled here as,
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Method-a: We assume the steep groove-ridge boundary as a slope. It is
reasonable to make such assumption since real flow cannot be infinite steep
along a real wall due to viscosity.

f 0ðjÞ ¼
^

h0

2Dj
at groove 2 ridge boundaries

0 other places

9>=
>; ð17Þ

Method-b: After all the grids are arranged to catch the groove-ridge boundaries,
a translation of all the grid in the j direction for half of Dj, so that no grid will
be at groove-ridge boundaries. The difficulty of abrupt changes in film
thickness is thus avoided totally.

The above equations are solved by using an explicit method in conjunction
with a 4-level Runge-Kutta algorithm. A total of 129 nodes were used in the
circumferential direction and 21 nodes were used in the axial direction. To
obtain the steady – state solution, a time march is performed until the
convergence criteria are achieved.

unþ1 ¼ un þ Re sidual·Dt ðn denoting time levelÞ

i;j
maxjRe sidualj # 1024

Time step is chosen based on CFL conditions and can be roughly expressed as,

Dt ¼ l·
24p2

bh3
max

·Dx·Dy

l is a constant chosen as 0.5 presently so that a convergence can be achieved.

3. Validations and comparison
3.1 Comparison of method-a and method-b
Pressure distributions obtained by method-a and method-b using data given by
Jang and Chang (2000) in Table I are shown in Figure 2. Method-a presents a
saw-tooth shaped pressure distribution while method-b presents a smooth one.
Zirkelback and Andres (1998) mentioned that around the circumference of the
bearing, a saw-tooth shaped pressure gradient resulted due to the varying
clearances that occurred with alternating grooves and ridges. Saw-tooth
shaped pressure distribution can be also found in Bonneau and Absi (1994) for
an aerodynamic journal bearing and in Jang and Chang (2000) for a
hydrodynamic journal bearing with small number of herringbone grooves.
Method-a is deemed as more reasonable because it presents results that are in
agreement with earlier reports. Therefore, we will apply method–a to further
analysis.
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3.2 Validations
Results obtained from the analysis detailed above are first compared with
experimental data for the symmetrical herringbone grooved journal bearing
investigated by Hirs (1965). Geometry and operating conditions are given in
Table I. The agreement was quite good using the same parameters given by
Jang and Chang (2000) and the comparison is shown in Figure 2. Figure 3
shows a comparison of the dimensionless load capacity, as presented by
Kawabata et al. (1989), to the present numerical predictions. As shown in the
figure, the predicted load capacity by present numerical method agrees well
with that of Kawabata et al. at small eccentricities. It is noticed that there are

Kawabata et al. (1989) Jang and Chang (2000)

Number of grooves 8 8
L/D 2.0 1.0/2.0
�b 23854 23854

hg 1.0 1.0
a 30[deg.] 70[deg.]
wg/wr 1.0 1.0
Pā 0.0
Pc̄ 20.1

Table I.
Geometry and

operating conditions
of a reversible

herringbone
grooved Journal

bearing

Figure 2.
Pressure distribution
(dimensionless) along

circumference at axial
position from centerline

(L/5D)

Figure 3.
Comparison of

dimensionless load
capacity with

experimental result of
Hirs (1965)
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some discrepancy at large eccentricities. The discrepancy might due to
negligence of cavitation in Kawabata et al. analysis because cavitation occurs
at large eccentricities.

4. Results and discussions
4.1 Effects of eccentricity and groove length ratio on cavitation zones
The cavitation zones of asymmetrical herringbone journal bearings with
different eccentricities and groove length ratios are shown in Figure 5.
Cavitation generally develops at the diverging section of asymmetrical HGJBs
and follows the groove shape as the groove apex moves. The cavitation area
decreases with decreasing eccentricity.

4.2 Variation of cavitation zones with dimensionless groove depth, groove angle,
L/D and dimensionless cavitation pressure
Figure 6 shows that the variation of cavitation area due to dimensionless
groove depth, groove angle, L/D and dimensionless cavitation pressure for an
asymmetrical HGJB at groove length ratio L1 : L2 ¼ 7 : 3: At large
eccentricity, with the increasing of dimensionless groove depth, groove
angle, L/D ratio and cavitation pressure, the cavitation area increases. At small
eccentricity where is defined here to be less than 0.6, no cavitation is found.

4.3 Pressure distribution variations with groove length ratio
Figure 7 (1) shows the pressure distribution of predicted pressure in the along
axial direction at x ¼ 0:5888: The peak pressure moves to the position of
groove apex while the groove apex moves. Comparing to a symmetrical
grooved bearing, pressure distributions of asymmetrical HGJBs axial direction
are asymmetrical while those of symmetrical ones are symmetrical. At one end,

Figure 4.
Dimensionless load
capacity compared with
Kawabata et al. (1989)’s
data. (“K’s” stands for
Kawabata et al. (1989)’s
result)
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Figure 5.
Cavitation zone variance

due to eccentricity and
groove length ratio
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Figure 5.
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Figure 6.
Cavitation zone variance
due to different geometry
and operation conditions
when L1=L2 ¼ 7 : 3 for

groove type (a)
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Figure 6.

HFF
12,5

532



›P/›y decreases while at the other end it increases. As we known, axial leakage
rate is proportional to pressure gradient at both ends of the bearing. Thus,
asymmetrical groove pattern can increase leakage at one end and decrease
leakage at the other end. As the groove length ratio increases, the leakage
difference at both ends increases. A proper ratio can be found at which zero-
leakage can be achieved considering surface tension and gravity.

The pressure distributions along axial direction when x ¼ 0:5888 for HGJBs
of Type (c) are presented in Figure 7 (2). The pressure distributions are

Figure 7.
Pressure distribution

along grooves at
x ¼ 0:5888: (1) for Type

(a): L=D ¼ 1; 1 ¼ 0:6;
(2) for Type (c): L=D ¼ 2;

(3) for Type (a), (b) and
(c): L=D ¼ 2
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symmetric since the groove pattern chosen here are symmetric along the
groove center. Unlike a symmetrical HGJB of Type (a), the peak pressure of a
HGJB of Type (c) does not occur at the line of groove center, but occurs near the
line of upper and the lower apex. Leg AB and BC form a herringbone groove
that pumps lubricant toward B while leg CD and DC form another that pumps
lubricant toward D. Figure 4 and 5 (2) shows that groove patterns with longer
BC and DC have less pumping effect and result in lower peak pressure. It is
because the herringbone groove formed by leg BC and CD does not contribute
to the pumping effect. As shown in Figure 4 and 5 (2), when 1 ¼ 0:6; the
pressure distributions of groove length ratios of 1:1, 9:1:1:9 and 8:2:2:8 are very
close to one another. It reveals that though the pumping effects are closely
related to groove length ratios, they are not simply proportional to groove
length ratios.

Figure 7 (3) compares pressure distributions of HGJBs of Type (a), (b) and (c)
when L=D ¼ 2: A groove length ratio of 1:1 forms a HGJB of Type (a). When it
rotates in an opposite direction, it is named as ‘1:1 rev’. A groove length ratio of
1:9:9:1 is a HGJB of Type (c). Its leg BC and CD are so long that it is similar to
the ‘1:1 rev’ groove pattern, as most of its groove parts, BC and CD cannot
achieve to pumping effects. A groove length ratio of 1:2:1 represents a HGJB of
Type (b). It is shown in Figure 4 and 5 (3) that the peak pressure of a HGJB with
groove length ratio of 1:1 is the highest. The HGJB of ‘1:1 rev’, which rotate in
opposite direction, produces lowest peak pressure. When 1 ¼ 0:05; the
pressure is so close to zero that it reaches negative at apexes. This reveals that
the pumping force of a HGJB might be lost when it rotates in opposite direction
at near-concentric conditions. The design of reversible HGJBs of Type (b) is
necessary since journal bearing will be very unstable and half-frequency whirl
may occur without the pumping force at near-concentric conditions. The peak
pressure of a reversible HGJB with groove length ratio of 1:2:1 is 50 per cent to
70 per cent of what produced by the normal HGJB with groove length ratio of
1:1. It is because only part of the groove of 1:2:1 contributes to the pumping
effect. However, it can avoid a very unstable condition when a normal HGJB
accidentally rotates in the wrong direction.

4.4 Effect of groove length ratio of type (a) HGJBs on dimensionless load capacity
and attitude angle
Figure 8 demonstrates the dimensionless load capacity and attitude angle
variance due to groove length ratio. Values of dimensionless load capacity and
attitude angle at different groove length ratios are given in Table II. It is shown
that the dimensionless load capacity decreases, the attitude angle increases
with an decreasing of L2, i.e. an increasing of L1:L2 ratio, since L1 þ L2 ¼ 1:0:
The maximum load capacity and minimum attitude angle are obtained when
L2 equals 0.5 which is a symmetrical groove pattern. Hence, we can conclude
that the symmetrical groove pattern can achieve the best stability and load
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capacity. However, the differences of dimensionless load capacity and attitude
angle are so small that they might be negligible in most cases.

4.5 Effect of groove geometry on dimensionless load capacity and attitude angle
Figure 9 gives the change of the dimensionless load capacity and attitude angle
due to different groove geometry when groove length equals 7:3. We can see
from Figure 9 that with an decreasing of groove depth, an increasing of L/D
ratio, the load capacity increases. For small eccentricity which implies a near-
concentric condition, the smallest attitude angle occurs at a groove depth of 0.9,
a L/D ratio 1.0 and a groove angle of 408. A groove angle of 408 also achieves
maximum dimensionless load capacity at a small eccentricity which is less
than 0.1. The load capacity slightly increases and the attitude angle decreases
with an increasing of groove angle at large eccentricities.

L1:L2 W̄ f

7:3 1.906323 54.85221
6.5:3.5 1.917753 54.24816
6:4 1.930523 53.71764
5.5:4.5 1.941192 53.37064
5:5 1.952863 53.2018

Table II.
Dimensionless load

capacity and
attitude angle for

different groove
length ratio at

eccentricity ¼ 0.6

Figure 8.
Dimensionless load

capacity and attitude
angle variance due to

groove length ratio for
groove type (a),
L1 þ L2 ¼ 1:0
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Figure 9.
Dimensionless load
capacity and attitude
angle variance due to
geometry of
asymmetrical HGJBs
when groove length ratio
L1 : L2 ¼ 7 : 3 at
various eccentricity
ratios
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4.6 Dimensionless load capacity and attitude angle vary with dimensionless
cavitation pressure
Figure 10 presents the variation of the dimensionless load capacity and attitude
angle with the dimensionless cavitation pressure when the groove length ratio
equals 7:3. The dimensionless load capacity and the attitude angle decreases as
the cavitation pressure increases. The pressure difference before and after the
position of minimum film thickness is larger when the cavitation pressure is
smaller. Hence, the load capacity, which is an integrated value, is larger. On the
other hand, for a case when the cavitation pressure equals 21.0, it is very
unstable since the attitude angle is very close to 908 even for a large eccentricity
of 0.6. It might because that there is not much cavitation occur till an
eccentricity of 0.6. Consequently, the pressure profile of the journal bearing
remains antisymmetrical about the position of minimum film thickness, and
results in a large attitude angle and unstable condition. Again, the significant
effect of cavitation on journal bearing performance is proved.

5. Conclusions
This paper presented cavitation footprints of asymmetrical herringbone
grooved journal bearings. The effects of groove –ridge interface geometry was

Figure 9.
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Figure 10.
Dimensionless load
capacity and attitude
angle variance due to
dimensionless cavitation
pressure of asymmetrical
HGJBs when groove
length ratio
L1 : L2 ¼ 7 : 3
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considered. The results indicate that the cavitation area follow the shape of
groove as the groove shape changes. The cavitation area decreases with the
increasing of L/D ratio, groove angle and dimensionless cavitation pressure,
and the decreasing of dimensionless groove depth ratio. The load capacity and
attitude angle of a type (a) asymmetrical HGJB are not greatly different from
those of a symmetrical HGJB. The load capacity decreases, the attitude angle
increases slightly as the groove length ratio increases. Though Type (b) HGJB
has inferior pumping effect than a symmetrical HGJB, it can avoid an
extremely unstable condition when a symmetrical HGJB rotates in a wrong
direction. The pumping effect of a Type (c) HGJB is found to be related to the
groove length ratio, but not proportional to it. The effects of cavitation on the
performance of a type a asymmetrical HGJB at a groove length ratio of 7:3 were
also investigated. The load capacity increases as the L/D ratio increases and
groove depth, cavitation pressure decrease. For small eccentricity, the
minimum attitude angle is got when hg ¼ 0:9; L=D ¼ 1:0; a ¼ 408: Cavitation
is proved to have great effect on performance of asymmetrical grooved journal
bearing as well.

Figure 10.
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